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1. The following corrections should be rodo to subject report:
tFigure lo: for hu, read hU. .

Figvro 1, legend: for sing 6-plato, rtxtd single-plate.

"Page 7, flfth line folloving oq. (1.13); in oxponont of integrand:

qfor -a sin ktq read -a sinh t.

Upper right of Figure 3a: for h2 
- 2 , read k-p Then

place a zcro (0) to upper loft of the point r"- p2 .

Figure 3fs Place a ziro (0) on the real axis directly above the

polo (o0) which les in U 1 . 11
Figuro 4, legend: for nearby, read nearly.

"Figure 7a: Placo a polo (o0-) at each "r of the contow and half

way between the o's on each vertical dashed line. (A

total of six poles arc to be inserted.)
C Page 19, 16 lines from• the bottom, the integral should road

a g(k s(uk))oxP(ixsn(l1,k)cn(usk)dn(uk)du (The factor u

is to be added.) Then if g(klon) has the even properties of sn on 2 (say),

and x >0, the contour r my be transformed into J and thence into a di..
r4• " agonal connecting iKW with 2K - iK' plus a horizontal connocUing 2K - iK

with -iK'. On the diagonal, the integrand is an odd function of position

with respect to the midpoint X owing to the fact that cn is odd about K;
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AISSTHACT

In appli) jg the Wiener-linpfl echiqa. tu 1practical probe"s . Ak
central Jifficulty in in properly factoinga1 Mw), the Fosuriet assfe.

K of :he Lernel. This factorization in sometimts made practicable Ly

replacaing the variiiblc w with, a new variable. X. is such a manuel

that tihc form of li(w(z)) is factorable by 'inspect"* is the z-plme.'-
The lutroduction contains a more meeral statement of lhii: I ea. n
Section 1, ian opplicatiaa to the w*311-know~A problem of etright-edge
diffiractios.

The esurface conniints in randomly spiaced. -parallel. condacting balf.

I'Le general method (if Section I in appliedI. sd a fortuaI processW
'in-3pection' lead's to flictor, having the suitable aaa1!ytic rpfis

!-.ction III deem!. with *oor results valid when the lialfplease;
are perpendiculeir to the reflc'ti"s plane. When the grazing angl.a..

*in small, and when S. the a~crage disatnce between edgea~niessord
in wavelengths, is lairge. the sqiwozintale reflection.co.r48a
the reflecting surface is gives by

R F '.{ iZ X 4 iZ)2 (A)

where S' ni it i"S is i a cusurc of the numbeir of Fressnel, woes ealsoh.
ing a phynical-optics calculation of Ike field illuminating the edge of
atypical half-plane. A higbly imnplausible alternate Jefivalicas of(A)

is also presented. as well no a oreslais for back-scatteredi power 4eaalty.

1he problem considered in Section IV is that of diffractionb
conducting half-plaue which lies in the plane interface between two
different media. The presment factorization method its applied to oh~in.a
in principle, the (artorn rcqu~red in solving this problem by the Wileavi

Ilopf method.

PR~lOBUM~ STA M .4

Thi isi it, final repsort on one pliame of sthe general problem of wave
propagtiu on over an rough 8ourf~ace; other "Ar continues.

NIII. Probtlem N 11-01 .%7-

Uoaer utmitted Fh,ektaary 26. 1054
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APPIUCAT)N OF & WW.NIKR-IIOPFTFCH.%I-4

To CERTAIN I*FNIACThiN PqORLE S

INTRODUCTION

iLe now fmoiliar Wiener-I!,o method has bees fount! powerful toot is tde solutio ofr certain
diffraction problems. (See thr paper of Carlson and Mies I for an example end a comehensiblediscussion of the method.) Generally speaking, the Wieser-Hopf ,method is need to noave ma integral
eOuation of the Faltugg type having the following wtruc'.tr

a (x1)z'

Here F(x) van isho, in, x 4 0 and is unknown i a > 0, #() is knows is x 0 sad va(shes insX < O.
S(x) ka unknown in ir < 0 and vanishes in & >0 asad H is known. Taking Fvw;er traesfams of each

seide by multiplying by exp(.iwO) and iategratiag ove -Ca to, we get

2 f(w) h(w) - V() * (w). (2

Here the transforms f(w) and 9 (w) w R in L (regular. zere-free, and of limited growth in . (w) < 0). .
y (w) in R in L (regular, zero-free and of iimi~ed growth is In(w) > 0). md It(w) geerally bhas sing. "
larities in both half-plann.s, but (for simplic;ty) none es lm(w) "0. Ilea one wr*teu -

h(w) hOL(w)huw) (() it
where 6L is R in L, bU ij R in J. If the singulerities of 9 are sinple poles is U them cp(w) can be
expanded in partial fractins an

4 -I) IN." (,,) >. (4)

0 i%1

. . . . ; . ., .. ". ' ,- ' . . - - ,. , -. ,' . ' , < _ , . . .- .; ,- . ,- .. . .- . , ., , , . , . < ,,• .,• - . , . , - . ' ; • , . . , -. - , - '. . . '• " ., ., ,



3'2 (2)VAL ANSARC6 LASOPATOIrT

Here the left aidle it, R in 1., the right Rt in,1. Xwe, iffi~inaasetwelo soamlatsiprovetl that neither
f(w) nor W.'.) have ai..gularitirolon mWA) =0, hell the tvko sifles havt: an commonl singalwritica,
and theft- ia a'conmon strip of fregularity' containint Im (w) -0. in which neither side. orir in fact so

ter onether athan constia snguaiy C.e Thusd*srte equaled hi tip n teeforebthoa
rrpettnt he amefun .ition z(w). hiut r(w) has no singuh~iritics anti gro-~ too slowly, with 1wI

tron beiother than hacostan Ci lat. ThubohRfetwof (5)mes b equale i:h C. p givng thew o r bqiton.the

fir~t containing f(w). the aecon,1 w(w). -One then evaluatesl C by a disicussion of the asymptotic

bebavior of either of the two equati,.Ius. or otherwise, and sotven the two equations for the Fou~ier

transforms I(w) and v(W). Taking inverse traarnsrtuatioas 6tes yieltds F snd #P halving the Originally

In applying this Wiener-llopf method to a physical problem, we we entitled to dispeave with

analytic rigor in performing the various steps. provided that the final formulation of the solution is

rigoý. Lisly shown to abey the r'!quircd physlical conditions. In using the method to suggest the form I
of the alnswer to a pbysictJ problem. the only step that is not rout ine is tlia fActorizetion of k,(w) into1

h Lb Civeil the 'common strip of regularity.' each factor can be eigpreaurd through a routour integral
Acontaining a logarithm in the integrafl& 2 Generally speaking, these integrals sesta difficult. Perhapsj

some study shoul-I be given to their asymptotic evaluastion. %,hica nmay he all that is required in crt~ain

problems. Certain formv of h(w) cain be fectoreil by inspection, or by dlevelopmaent an an infinite Pro.

problems aippear practically islbeyanoftestatedmehd.Aalrntvpocuewilie
presented. One starts, conceptually, atthe nofte rbnwheteivrstasomtons

being taken to obitnin F60d. For this purpose. one multiplies If(w) by esp (ixw) and integrates along

the rea! w-axiin, in the co~imofi strip of regularity. One is entitled to transformn the integration intocotu inerlia ope -ln hog h uaiaenw a<) wu'zd.Tefrmo

w(z) can lie chosten so that h(w(z)) has a convenient behavior its (unctien or 2. One can pras(ca

h in the z-plane. clo that the x-equivalent of (3) is at hand; but then the problem as to show taht theit z-integral, equivalent tit the inverse Fourier tranafortnatioa. has the correct properties an function of z.
Apo w W) is tit leist partly tieterinined through the singuldrities of h(w). we tend to lose the

comimon stri~p of regularity a-4 a dornuin for aiiolytic argument. and atuat use othcr properties to show4 thtit the reia'alas have the desired asailiytic iue physicill behavitor. In the examples to follow, o44 and
even propertie-s of various, a-integraanflt will Ise used to guatrantee the coeree. analytic behavior of
the resulting expressions.

Without the c'"'mon -itrip (if regularlty. there in further difficulty in proving analytically that. ;a

~ Ithe z-aanalofg of L-plotion (5), the two sides may be ripuauae' to at contitant. An alternative is preasented
by the physicil origin itf the .iailrnquent probblins. ()ne smets the lef, aifle of the analog of (5) equal0
to some conistnnt C. salves4 nlgehirairolly for f(w) andl '(w). Awl shows that the resuliing FRx) and

ýp(x) sauitimfy aill the rea:uitcn~cntts 'ict by life Physics of1 the problem.

j1

%1
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SECTION I - DIFFIRACTION BY A HUAL-PMANTE

Now we formulate the first of three two--imennional diffraction problems which etn in principle
be solved by the Wienrr-l1ofi method. Thei is the well-known problem of the perfectly conducting
half-plane. introduced both in order to have a solved problem ,wd as a limiting case of the two prob. _-
tems to follow. We convider i metal half-pl~ee lying in the region y -0, w > 0 of a rectangula tr
coordinate system, and plane Wave. T (X, Y) = A exp ikx cox• 00 -iky *,in 00), .,(k) ;'. incident

edge f th e half-planer ,". '. (The time factor cxli(-iwt) is nsuprescsd here ead in the fornu.-on this half-p .ne fron x 0. v.
tltions to follow.) With the electric vectut of this wove noosurmed parallel to the X-axis. i.e.. to the
edge of the balf-plase, 4zere is a current .ensoity R(x) induced in the half-plane. Suppose the total
field radiated by all cwrewts in 4P(X, y). Then,

q.1(x• (•.Y) f - [k i.')= y" dx. (Li) I fI

To satisfy the bouedary conditions. we must have @,(x, 0) • qt(x. 0) 0 in x >0 . Thus. with
F(x) Oin x O.

FO 11 (Nx), x ''.

It is well-known that

C. ,w, e, _-" '2 I -(, k r _-J. ,.) • :. ,i (1.3)

and that, with OW 0 in - 0

OW A-- dw (1.4)

where p "k con 96e, and the constant K is 00seasential. Letting

~(x) G *wx #v(w) dw(1)

we~(K hav f(m(.)1.6)4 naleri ~loiaaog .Fuir rnfrs
494

we hae rot(.)sd(.)a leni elation among the Fourier trmatushm. • ,.

2nKf(w) iA

A; 77
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With lm(k) > 0, there are a. siontai~itien on the MeAl W-asi", ~.ad the previously Aeveirilied!procedwe-
leado to the correct solatast withow Aificulty. it;'ce h (w) -(k 2  (k w2)t- YAS 0i

It and h (w) is split into two factors with tbe required analytic properties. We thus obtaits the
equiivalent of rEquoiaton (5

(kw2n~ w~ K F.4. A

For f(w). the result of equating each aide of (.Sý to C is V

2 EKI (w) +A~~ C cr V-w(.9

W1~cn this f (w) ins ubstiteated into (1.6), the integrul van ishes for i < 0. Here the contour of intepa.-

tion can thee be removed to infinity ntcross the lm(w) < 0 half-plane. where the integrated hasi. so
?ing-Adfritics; fVr x 0. the integrtaad vanishes with Imt~w) --- , siad F(£) -O, a <0 follows.

On the other hlind. when z *> 0, the integrand increakes expoaentislly with lm(w) -- ,but tek
integral can be evaluated as a residue and A branch-line integral in IMMw 0 (G 1).

With C ~'0 the C-4opezileat eI - of FMx is propoartional to

C 4 'oin do C etk r (3/2) x- 32.

INC sMiHAr` Wirn n ~IP(z is

C a is 4-1 31 - ei P C' l(1/2) e'lt

ThUS 4'(x) tie scattered field, is infinite itt the edge or the plane when c a . a physically unac-
ceptnble conclusion. Secondly, if C # 0 and A -0, we have a source-frei. solution or the problem.
with the total field (calculated fr~om (1.1) properly *outgoing' and vanishing as the aid' of the plate

*but not vanishing fat y -0, x/w0-. 'Ihis starding wave is not excited by %P,, Anil would soon radiate

away if present at any time. Hlence we may take C 0Oin (I A) and 0A9~

Now let us exam-ine the caae lm (ON. 0. Here the contour in ýIe w-plexe is deformed According
to the scheme of Figures Its. 16. into poutionsa of the real nxis counedctr by three semicircular erc.,
one lying in U and centered on w m-k, two lying in 1, and' centered on w ~k dad w =~ Th Iis contour

can he used in both (1.5) and (1.6). The uingulsmriti"'s aire now Q1 lTn(w) 0:a pole of 4)at W ti 1an 844

branch points of It ut w t k. Here we have an, 'cornnvion mtrip of regtulswity.' but continuations of the

j ~~~solutions F. PJ, alictuly obtained from an arinurrent using a 'common ti. must lie aunht ions over the
new -contour in the limit lm(k)%."

For guidience in what in to follow, let us oneisume that we have obtained the transform relation
(1.7) and the deformed contour applying to Ira(k)'-- 9, hot do not know how to factor h (w) =(k2 2 )-w),

lf.,we let w - k min (), till of the known, functions of %v in (1.7) transform into periodic foactio:46 of 6

for which the Only singularities in the finite t0l1plane tire tsimple polies. Thum the, transaformastion

-. 7>
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real w-aMin, then g(k sin (,) in even in t. flat the i*1 .a la•wgne', Itq, converge) vanishes if g has
-re geucrol properties,6 i.e.. if g(1 min 0) in I in -, n - (•A 0le) ' ,, I (o) ý 0, and in an " i

function of t on 0 - 'I ft + It (here we any that g in It in U}. )llus the propertiea of g in other
L-re"ons of the O-plane are not important, even though g (I sin 0) may not be It except in. Ii* (and

therefote in 11 , by the even property). Of courae. the name ntrg'mrnt ron be carrie A through tn the
w-plaue if the original rontour in thought (of an lying oa a certain -_eet.of * hiemanx ueurfuce. g(w) i-
R in r" on thin oiheet, and the contow- avoids the siagularities of g on m (w) = 0 by semicircles lying,
in 1'. fly poniing *o the O-plane we unfold the Iliemanin surface and perhops have a cleaer idea of
the structure of the interrands thna if we tried to argue from a Iliemsnn surface in the w-plane.

In aplying this a tnlyto (1.7). we sntart two "

2 nK f (k sin 0) i A i"2i - * q(�(ih 0s . (1.10)

kcoo0 27 ks*in- p

lle.,2 the alenominator k con 0 W &a odd function about both ,i n and -7 It; by the foregoing argument.4,(k sin 0) mukist lie even about 0 "-'jrn. The known function 4p(k sin 0) is rven about both -% t!and
.sIt. The factoriz'ation problem becomecs one of splitting h - cooC. into two factors, )one even about-'1 n. die other even about % n. The xf-uCture of the Ioroduct con 0-"t is indicated in Figure Id. where

the symbol e narks 'even points' of cos 0-1. about wnich con 0 is even and where the G-derivative
vaniohb.m and (*) indicates a pole. The structure of the two factors is indicated with the same
sye:boti•nm in Figures le, If. One can obviously chooost, periudic factors with p.eriod 4 't, whereas
con 0 has period 2 rt. Factors of (k con 0) " with the requisite zeos. evea points, and periodicity

hL [V L 4 2  jL 4 2  i

T'e w.equivalents ore respectively (k - w)"%. (k * w)". Carrying oat the separation of (1.10) intotwo equations we get: :::•

2rKf(k sn ) iA Vri sin [-4- sin"

iAc i(k 
sin 0) 4 2 (k.i .

. 1,12)

n 2 n(k min 0-- 10 .:.•:

Here the heuristic argument is that thn two sides are representhtion, of the samc function of oeriod" •

i 2)
4 Lnne soe the regiontic ofrrumen iiiityha f the two sides oAr e repelap innf the p siamte function ofs Penta. yaVrinothpeiosrgmuthsontnmstbzrnohatuch riodef

'> . . . .. 
. . . .

.¶-.-.• 

. .•-.• .•,.

• :" I-' , n' s! s" " " ce [h region of re uart of th tw side o- rh" ""n th pe-", r .':imi• the, fun tio must -be a :•;•. .--conat l e•ino h rvosagm-0 this contan must ý, zeo m) thtecid•,•ue i of'••
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(1.12) can be equated to vero. lie two reseltirsg egisat""~ con the~n he solved4 f-WIWfi (u,
iy(k sit 0). For 1. the reslt isO

i Ak sin w~in' (- i n(-.2/
2,cgksin 0) - [4 2 Ii(113

u(k *in - IL)

The constant-Aetemisinig argument in bax nd Clite rate of Wowth of the part of qo which is 9A
obiout -% IL. We assume that 4P(s) must be boun-'kd is the linkit x ~-0'0. Thle piu f~wic see
about -% it produces so contribution to V.and the behavior of *' its determined primarily by the
behavior of the odd pant of * near t -I ~'on the vertical line 0 -it -%i rt. Hlere thme odd part must

vanish withb I at such a rate that 'J w(0) Ai exists. Iliai in' seen to Le true
(or at leasnt possible) only if the constant. to which thme right side of (1.12) is equated, in zero. The
argument is analytically slipshod, and we skould show that we have been led to a correct solution of
the physical pi oldera by examining the resulting clectronametic field. Thi a verifiivatiom in straight-
forward, and 'ilnot be reproduced here.

For this half-plate problem. Sommerfeld's; origitaul soiatiosa waa a contour integral in a uimilse S
0-plane. A good reason for thme fact that the present contour cannot he deformedi into that used by

Sommerfeld is that he started with an exponent (iasin am*0 ksn0) wheitas the corres~ponding
exponent in (1.3) is am anaalytic is y at y ' 0.

SECTION It!- DIFFRACTION BlY IANIX)OMLY SPACED, PARALLEL. HlALY.PLANF

We consider diftraction over toe 'tough surface' shown is Figure 2. The surface consists; in a
randomly spaced array of parallel. perfectly conducting half-plants (plates) lying in x > 0. the edges

FAIIIlying in a -0, parallel to the z-axis. The pletes make n sangle 13 with the positive y'-axis. Let time

plane wave =epiy*i (2)a

be incident on thme stray. Let a measure distance from the edge of a plate, nod assume that the

induced current-density in t6e plate with edge at v is given bsy cxp~ipy~lu). That is. the same
current is induced ia each plate except (fa the phase factor. exp~ipy), determined by the location of .

the plate's edge an time y-axis. The currents between -iand u * dui in all aetripo radiate a field

S WMu, du) which. at least on the average, is experaoiWe am an integral,

7. tW(u.du) NIlwdu -de k( (k p)

L~~ain 8) * (y y acs )2J~ (2.2)

'N~

%I
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whs N gibe &,erwg aUUM&-01[lai P~r~ee itsi lleaggb of y-evai. Nefoithw~

116 t (k Fx2-+y 2 ) e~ e a 4 (2.3).4

where K in a seeseaea iffl coustant, an wit I (a) f~w 0 1w we have '

w (a.do) do 2 tNj . (2.4)

If we take 1 < 0 A" istegrate thi! ex 114a over tic length of the plates. we get the overage
reflected field R ecip(ipy - i Pk - p x), where 8t is the effective specuifr reflection ctuetffcient

%, A of the 'rough surface,* regapled as lying in the x 0 plane:

II4n N Kf (p coo (:3 'kp'- p2in 83)(k a- p20s. (2.5)

T'hus the reflectioa coefficient It in directly obtained through t6. Fourier warcnorin 1(w) of tAe courvea
* eusity, mAn the current itself becomes o.f ec~oaduy ;niece"

WO ze Re Y

* ~REFLECTINGI G iIPLANE PLATES

7t., n.: t, 1.).Ip~s 6A-ac
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Ilacnc we are Aiready interes.ted in findir "w)A Toward this cwf, we seelf to k*Pw the average
field T wcott~ered to a point u in a plate- with vo am y. Here we sassume that T is i*Aepeedeat of
the pewe~swatero ike rwatcwaW plate, and in the saseraps ficid L&Aii at. the paga."dar paiat. inte
absence of-the plate:

'.I q in2 ~.p 2 *2pw coo 6-w 2

Finally, we assume that the currenitt in this plate radliate fieldis 'Which cancel the f'otal Ascidtat field
IF 4 Won the surfauce of the plate. Using the. fatct that, in x a 0

2ii few. W (p coos0 l/kip 2  
dint)(27

we have an algelaraic relation among thc Fourier transforms:

nrK f(a) [+' 2  N a
[7k=T' k2 sin2  -p 2 p co

2n(w.p cooB 'k2 -p 2 win 0) 2~~~~)4 ()~()(.) j.
where O'w) is the trnfr fthe unknown fedsatrdb h lt ln t otnaiait
a < 0, (We set N -0 to verify that E~quation (2.8) becomes essentially the same as kisqition (1.7)
of Section 1.)

Now f(w) must be Rt in L as thcre are no current" in a < 0. and Wg(w) is ;aintilarly R in U!
Tofn n ith thes noy behaviors, the problem is to factor Mwv), the coefficient of1()

the cobnn terms in b. one esees that to find the rcrula of the resulting numevutor requires

tesltoofafairly general quartic equition in w, unless. 8 n. We continue with the detailedq
Jiscussion of the latter case only.

If N > 0, hMw) gains two o~lditiona, poles, owing tc. the dentominator of tha second term, a"d
A h~i, dditional xacm., as one sees by combining the terms and regarding both -4116s Of Mk2 - w2)4

ati possible. Of course,. two of the siodede irroi (if 6. lie on the 'wrong' leaf of the two-wheeted
ftienannn surface requiied by the pr:strice of the radical in the first terin of h(w). All zeros rauaat he
accounted for in a frictorization..

* o
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To l€cate zeron nnd poler of h. we firat find the polea joe to se. j terg,. namely, those at
w Ik2t 

- p)N. Taking p - k cons I( it ' 0), may. asliefito the plane iscialest wave, we see that these
ploe lie symmetrically with reppect to the origin on the line segnient coamectiag w - k and w - L.
"Thus the contour (the tent w-noia) pnoares below the pole on the right, above that on the left. as In
Figure 3a. Now let 64)"•-*O. ms!d let w - k min 0. ani in Section I. In the 0-plane the contour, 1.
avoids the p~les (0) am shown in Figure 3b. The forn of h is now (with N/k)-

co 2 4)•4 2 iQ cos q - co=2 &A (2.9)'
hk coso0 (coe c cot 1)l(coe 0 C * cos it) '

The zeros of h are found through

coo 0 -iQ 1 Vcona L, - Q . (2.10)

(These zeros are indicated by (0) on Figure 31) For small Q, the zeros lie near the poles of the I'
oripinal second term of h. In the factorizc.tioa, each zero must he conteieed in the same factor as the
seorrby pole, so that when N *. 0, the zertc. move toward the poles and cancel them in each factor,
and the factorixatioa of Soction I results. ily examining (2.10) one verifies dtis behavior.

(The argument for FE / f is more complicated. It will, however, be assumed that the diecussion.Pppies; I.-A this Cline. Le, that the zeros and poine of Is. migratiog in tile 0-plane runder change of N"•',and F. always lie with respect to the contour as shown symbolically in Figure 3b. Ihia cannot be

proved, apparently, without a formal discussion. 1ler one determines sigus of such forms as
(N 2 - p )'" by the fact that N > 0 and lIm(p)}% 0.) "•.1

Now we factor h into two factors, h T Is % whre Is. is It in U1 and even About ni, and hLi s R i n L a n •v , U .v " .
is L0 ad even about -% n. (The expressions Iin O and IR in t. will be understood Ieace--

forth to include the foregoing evenness propeztics.) First (in Figure 1c) we label the pole. on the l
ral 6-axiS, those with the notation U1 belonging in h.. and those with the symbol L belonging with
hI This can be done almost without thought. Then we label the zero in U. with the symbol .,,
since this zero cannot belong to hu. Similarly. the zero is Lo, its labeled U. Now there is no zero
in U.1 symmetric at the image point (with respect to-• %) of the zero in U.; we place a zero (0)
here. ann [bl it I', since sucl a zero in required in Ise Since h lacks this zero in U.10 we cancel
it with a pole (-), vlich inust belong to lu. frl if this pole is in hL similar pole must cancel the
tme zero in U (The dashed arrow represents the argument connecting the new zero and pole with
the zero in tJ~, and im a first step is a 'zig-zag' argument specifying the •4es and zeros required
by the presence of the zero in Uo.) If the new pole in 11 belongs to hu, a similar pole must be
found at a point &ymmetric with respect to N n. i.e.. is U2 1. Placing s pole of h- here, we find a new •.•"
zezo of h1 required to cancel it, etc. (Thus there will be a double zero of IsL at the point at the end
of the second dashed arrow, since there was already a zero of h at this point.)

In Figure 3c the zero of I in 1 must beWong to Is since otherwise It wuald tequire a tew zero
Sin !(.; similarly the zero of h in U I elongs to h1 . Tfi. zeros in L and 1I IIe assigned in the -

asame way, except that oaes step in a zig-zoag argument is required. 4e then carry out the zig-za-
"arguments, starting from each of the above zeros, the resulting stractire of h is shown in Figure
3d; rowating the structure 1800 nbout the origin given the structure of ho (FigUre 3a). In fact. we
may set

sh (0) 0) (-0) (2.11)

4.
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"Ihe next step is to divide through by U., which reulits is

2nKfh1  MIX ...(2.1)

The first term on the left is R in 1,. the teri on tae right mR is UO, but the second tem is ofsa

mixed chiaracter. Its structure in shown in Fig•re 3f.

We note that T in even about bott A R and %•n; v in R is 1.0 but an is Ile. having 4 pole atsv
o - 4" on the 110 side of the integration contngr, The form. ip/L in even abouti U. luint retains she
pole a 0 ~.,and hence isnot 1nIla Wenwnrt

U -- (2.14)

Hiere the first term on the right ir even about ni it and containa no pole in Ur and hence is R is Us"
(zeros in L0 may now he. diaregirded). The second term is R in 1,,. since it differs keft 0 i • a
constant factor. We can therefore set

2K fh0) k

The left side being R in 'Log the riglht R in Ijo the function repreaseted by each side is even uba j
both % at aid .% it. and hence has period 2 nt, and has no singularities is U*, UP, Log, ead L, 4r on
the boundary, r. between these regions. Thus the periodic function representea hLa we Ifaitie Bias*J1
larilies in one fuli period, and therefore has no singularitien in the finite 0-plaue. Finally. if the
function grows sufficiently slowly with Ni(O), the function can be only a conasltt. As to diees r&Ue
of growth, one sees from Figure 3e that poles and zeros of Lt, may be paired is sulch a way that use
pole is left over at each of the points n (2a - i). Thlerefore liht must grow like .o.0/2) (the
*exponential factor* bcing a constant). The same growth holds for IAL hy virtue f (2. 11); henc. e
1/h grows like con 0. as msay be verified by inspection of (2.9). Since 9 vasisise for 1m(O) - j ..
the rate or growth of the right side of (2.15) is 'sufficiently slow' if #a growr more .h6wly &ies
coa(0/ 2). The Y of (2.16) will be seen aceeptable in this regard."..

Again we determine the constant (represented by both midpei (ilf (2.15)) by appeal to thk plysic.,,
coucluding that the constant must be such that the rate of growth witl & > 0 #i 'gv( d i *

W(N Ti - it) ia minimal. The part of q1:(- at * it) which is even in 4 produce-.s s contributile to the
part of the scattered field iV found from w by integrat ion over . t - -. Owing to its polei at

+ 2o t, h in essentially od'i as function of large I > 0. tie remnaining poles snd zeros pair p,

conltant K l and solving for W, we have, using the (act that (P is eves is t.

00O) hu (0)
Part of which is odd in t + k"h(O

6 (,-14
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Sim* -0 - a --. w m e obtain the minimal rute of growth by soting K" 0. Wtr bave

2 nK K ilk*inh) ] (0 [.16

The poles of 4 and .at 0 it cancel. and the zero ,t it, i the interior of Uo becomes the pole of

f which determined the magnitude of the currents at large 3. When N-,.O, this zero migrates to 0
and the curreAt diatribution in the mingle plate of Section I ii achieved in the hiaiL

With P given in (2•2). we can SOy that the problemt is formally solved by abSiituting 6s asmlytie

expemasiom lot the h. 6L of Figures 3d san 3e in (2.16). Toward this end. we can write (see Figere 3b)

L 1• i" t"

--ie Si .o00i "e.:
i U r I + is +j 4 .... +[

2 2 24 2 2,,t

re.p . 0 +.

r ++. a +u J9 +0 + r "+

The convergence of die inflinie p~roduct is required only ia the utrip - n/2 < Hal(O) < -2•
4we do not explore tees question, but it seems aparent that rr.mid convergence van be achieved by .•':•

properly grouping factors after removiag certain of thne gamma functions with low nmiedicen from het

product. That is, -lter removal (from te de~nominator) •.f the g~amma "wactionu containing time zeros ~ ~ ~ ,..
,of L U, U. L, di, te gammn functions mony be our [ a tine is aTahe: pruciengfctors rapifiidty aproducting reunit e ny in the s trip of i nterest. Ai:1

To evdluate the remaining Constant C, we set h ' L-, equate the produ e roU
ote h of (2.9). and fnd, using mie identities ' m

1'(rz) P(,-.z) u k - ,cycm s iunz L i ] 2:::

t oevastc 2 th w/k. c t cweqt

, .'. *-

" Uý 0 - 0)' e the o r' " 'L "

rX•,: +,- ! rx Y con Y• ! o
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Through the logarithmic inteltrals. Blaser "ad Karpr were able, 10 Clow an .-Xff essiou having .

easy ad te ailficaltic.. presented by the 6%w) of (2-8) ia the --eoes came 1B M . Their factorizatios
may possibly he adopted to thzi present case. but. the case 0 t '%it woNU tinuoay present adlditioaial
difficulties.

We conclude with some remaorks about the saiqseaess ef the factorization. The zag-z88argumeftJ zero ~~~f hL at &Ome new Point in the O-planc. the"e would have to be a cosyeuuatisg oeihu
Furthermore. there would be a zero and a p~oi at poirts symmetric with respect to A~ it and % Kt.
respectively, and these new ..ingularities, would require Comapensating zeros "Ad poles. etc. Events.

notbey g a undpole oul ba zeroe wouldaae ihave torreultnben (ay)caotein 11sndllya pletrizrowAudnhve oIellca(d ) %h srip-. Suchi (0 & Pole Scha Ofle t zro

zero in at o the same point in this xtrip. 'fhus the factors could not have the desired analytic pro-
perties in Us or 1.00, and the introduction of new poles or zeros is impossible. We then have the option
of multiplying the presen~t lht by, CO'( and h~ by e'q( 6). Heint (I must be es entire (auction and even
about both m3,tand %3',. q in therefore peritsaic with period 2Kn and most 16e a( the farm q' (sin ID).
where q' in some entire (unction. If q' is oat idertically a constant. q'(sie 0) grown at least as
fast ts 8 soin 0 1. for some finite cousatsnt q; alaug some vertical liae im tim fowegoia" strip. Hers
the location of tha. contour integrals would be deterinised by %, rather thasx mims tkx I < qo; this
is physically ineacceptahle and we munt have q' constant. Such a cofsteat would not appear
explicitly in the present results, tend so it any be takenl 06 3e9M

SECTION III - SOIll QUP.NTITA11VE RESULIS -*.

Th'ts section is devoted to the consideration of some of the refleictiag propertties of the parallet-
plate medium of Section 11 (Figure 2). The plane x 0 may be regarded an ra vo surface, a surface
which c&6~ be described only statistically. 'Ile complete statistical description of th-e surface is conw *.

tamned i. the following statemer~t. Let L be time distance (along the y-axis) between the edg~es of
consecutive plate.. The probability that L. liesi between L sand L 4 L ia given by eup (L I/S) dL

I, ~~heire the average separation S is connected with the N of Lectiom UI th~oulh S - 11N. Ihe fact that

proilem Ontheothr bndS (t N a he nlyarbitrary quantity ia the statistics of the surface,

enjentialy iscattas rfnS

Il4aallpae fReeec r eual spaced with a vowdiss spacing wihw a
calS*IesatrnJrpete fte'ufc'o Rekeence Idepend ONS in smwa h

sameway hat he peven proertiw deead n S;,itereacea in the fntoadpa-niso
S wd o S ool sed igh ontheexentto whih 'herandomness of the presenh surface atal

a ct te eucd catriS.Unoruatlythbcomaparisno is not easy. owla otefatta h

onlyQ'f koeqvlety) nppar tot the of I h

mathrnuicaly cnvrientcom in efeenc I i SoI(O). whereas the presently convenient case

it S> 1sa tegrazing iniec 2- tsnaI k in Equation (2.))

wehvWr now obtain en approximate espreasion foe' IR. usnag Euations (2.5) mAd (2.16). With 0 it.

it 4n NKI(-k sin 10 (.1
~'r~ ~. __________________________(3.'.1It........
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We bypea ans-ut of " .' material of %Se.ion 11, resorting to an •pproximntinn valid for the case
Q • N/h -1 ani 4 - 1. L.e.. for large spacings between the plate* sand far nearly grazing incidence.
Ilere is Figure 3b the poles and zero• in the ieteror of the strip 110, L0 lie close to the origin, and
*ose is the interior of the aljcneeat strips lie aear I ft, well away from the contour of inmegratlon.

The outlyila, poles and zeros are important only in their effect os the behavior of vauriau functions
is the strip Vo0, L0 (- t f * the (0) * n 4 i); under the present assumptions. the close grouping of
pole. and zeros outside of the strip meana that their effects cancel in the strip. Thus, to mome
• ppoximation, R1 depends only on the poles uan zeros, in the strip Le. tI.I. Instead of evaluating It

through the formal procedure of Section If. we now r,•-mproach the factorization problem from the
p of view just outlined.

With in, p a k con p. w -k sin . N/k in Equatioa (2.8). we may write dows the
result of expanding the various trigoaometric fumcti(.an in power series, obtaining, t. a fiast
approximation

2X f (k sin 0) 0o- r/.3 + 2i Q)(0÷ + . + 2iO) 1 _ *_ _ + (3.2)4 (a- 1A) (0 + 1.) 2n.k(e. 9)

Here 4P has been expressed as a simple pole, so that the general procedure of Equation (5) is
inoedi"Aely suggested. We obtain

2 K f(k sin 0) 0- " + i Q) i2,A __,,

(0 - 1) (i +_+____

2xuKf(.k *ialP) * l ss2iQ (3.3)ri ~'2 NQ 12  4Q'

Rleece6

TIl• clearly, gives the correct R -. 1 whlen p-0.

'no radiation from each plate is s~ymmetric about the plant of the plate and each• plate is
perpendicular to the plane x - 0. Thus the power scattered b6A allo;g the direction of the incident

wave is rea.ity calculated from f(-k sin 4). We use (2.3) and the subsequent expression for the
rreat i~e) (u*a with 0 x••) to determine the field radiated by a plate with edge at Z "0, y -0,

t to & point z - r in p, y -r coot 1A. Taking the "solute squa're of the result and multiplying by
N. we conclude that the power back-scattefed in thin direction, per usit length of surface, is, at

N - If(-r sinP) I
kr

%.
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IlTe constant fartar an &Ve iri-is, ma tsfRG4, ami the %4(0 Calculatione Would have to be
repeated in any event to obtain may correlation with the practical radar CQne with point source. sod
with appreciaitie scattering in the 8-directioa. Nevertheless. the farmula may he cornpazed with
other two-dimensional back-scattetiaglramunamas they may occur. Finally, the dcpeadence of th
back-scstter on Q and iA is of primary interest; for fixed Q, the back-scatter varies as I 2 for aniall 1L. >

Now we wish to discuss the physical significance of the approximate results (3.4) and (3.5)

ihnth obtained is the mnathematical approximation lit atl 61al the moat imaportmat features of Ammte.rial
of Section 11 have beea as~tlected. Although "h pmohlem; osienuabiy contains two parameters. Q sa"
14, one can set a IA~Q-1 and obtain. from (3.4)

-1 -[iz- ýFi.-2i,2 T -t ~ 2ix2- a is. (3.6)

Similarly (3.5) yields

I'ack-scstter 92 it '. 37

in Figures 4 and 5. theme quantities love been plotted against tihe single parameter a. Ile physical
significance o! z is as follows. If out calculates by pinysic-il optics thne field illminatiag the edge

of one plate in the partial shadow of a platw at distance S. *oe finds that 22 is a mecasure of th6

nuimber of complete Fresuel zones entering the calculation. 'Mus in the limit a >> 1, there is very

scattered by the single, isolated plates discussed in Section 1. The asympit oti aom

R x w 'bP. a ckscner' C/z . 2 >> 1 (3.0)

~~ are also these femnd in the manner just suggested, here she simnplest verificatioa its to see that th6'
f((k sin 0) of (3.3) is asymptotically equal to that of (1.13).

We 6ave alteady discussed the caea~1 hc e oB~. n back-scatter' a ILk or

a:Z2. The singularities is thne principal strip of the 0-plant migrate with chailge in:a in such manrta aiu iglrte aclt ietesml eut on itelmtn aes eh',

may perhaps regard the present resultam as first termns in expacaioos obtained by taki~ng into account

the groups of poles and zeros found in the sunccessive strips in thme 0-plane of Section 11. The termscotrbue byteeplsadzrsihpt ti ie ehp nepeal swsn rmfed
JiffruateJ and reflected a times wound the edge of a plate.
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th ik-i space. If~ the fieldoincien on one i ski~ it s uifor oer te 4inkS amt andi rersnte - is.

large dadamlictude bys 11 hn ei area A.S~ o f the disk acts ar all toure yofln a d spheial (scalar)ewa2

give by UUi/2P r)eaip U4k:. where r in distance Ire. thae uai± areA to any other point ini space. .
(Choice of the proportionality constant in determined a* as to give comiplete shadow immediately
behind a*%iaffici".11ty large disk.) Thaim, neglecting etige effects. we may express the total field ot
4 pOisA is SPA-M p by

U(p) 130 (P) O ' (k/2 9 1) exp(ik kp 1) 0 od arva (0) vol (q) (3.9)

a ~~where V0 is the incident field radiated from (some soarce. ~

Now we am going5 to take a time average of the total field, under the assumiption that the disks
are swirling roandmly about I* D. remainaing always parallel to the yz-plane. Toward this e04. we
further assume that the field incident on a particular disk is the average field at the location of the
disk which would be found in the absence of that dink. (This is a .veil-conoistent field" assumption
similar to that smale in atomic physics, aund made in the Section 11.) With these assumaptions and the ...

well-known property of the Green's function exp(ikr)/4 It:, we apply the operator V 2 + 02 to both
si~es of M%9 .&W get. is 0.

(V' 4 k2 -(-2ikN'A)U,

V2J*f 2 1*iN'A/k) 3 NlZA11i ( 3  k" 0 (3.10)

Thu%, in D. for smnall, N', the effectiv propagation coyatant V' is given b- kV Mj +( EV A/k.
fleece. the average plane wave behaves like e~~ e' As; its power falls off like eloq s ha
is arcemneut with well-knowna theory, one large disk of ares A effectively removes from the average
transmitted field tj~ja the power iacident on iL (Te general mathematical appro&Ac used here
is that Ofl I- L Foldy. i'hys. Rev.. 67, p. 109, 1945.)

teplane wave exp~ilx coo iA - iky sin 1j) incident on D from ahove, we have some wave with.
amplitude T transmritted into D, aiv! some wave It exp(ikx con ui 4 iky sin 0± reflected iota y >0 at

th 0itefc.W caclte n nteasmtosta h oa wave an d is1erivative

0mcniom cosy0 n N'/)a h rpgto osatapyn ny 0

&a obtain

A ~~ .! . . *. . . . . ...
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(the 0of (3.4)), we have nn eapparent grnneali7atinn of the. reflectiou coefficie~nt foirmula (3.4), for
w'Aiclt validity wan clamimeel on ly in the case Ai - 1. 0 N/k -1. The Iwo formulasai become

ofa perfetlgy confuctiof thealf(iiasede whc len the urrntinued initerface m bewieth two ager~

tof 3 t 1) haif las edge4 the" o eqiales o ~.' 2 tor S 2.8 twosU oud t is, met of te f

E~) /C ON~ IV - DIFRACIO BYA I 2 )

We 2n cosdr the p"lripag tion contants M in the tw oblem of tn e C ifoo of a conatan waoe

tahere k IadI2 .thprpgto osissith w m ia andCikcntn dependigO
the four complex electromagnetic constmots effective to angular frequency W. We &hall now take
k > k >0. on the groundst that the cailne of Jassy propnigation conrtanta way evenitually be

obtiedb aiklytic continuattionl. Writing k 11/k~ 2 I, we [lave the p".6left of factoring I, 1/ht
*C ' VI-w F1 - _k2' ~W ~w/k where C~ ' i again a conaetarl. At function of w' t

has branch poinsaita w 1 /k. e shown together with the integration contour in Figure 6.
To remove the branch points we make the trwiaaformaation w' an(u. W. (Tae function an(aa. k) is a
Jacobian elliptic function; for this anal subsequient elliptic functions, the reader in referred to
Rleferences 3 anti 4.) The structure of sn(o, it) in the u-plane inshoduwn in Figure 6h, where polea, a.
zeros. and even pointaij (points about which tea is an even function) are miarked with the symubols

~.0, and e. respectively. The S-ohaped interrntiota comntour into which tImera w-ix-ia map. is
indcaed y . aal ovr hi-oontour, the Fourier invermion integri -x .( R(W)cXII(iwx)dw

tranafonns essentially into J ta) =Jrr g(k 1 nn(uAk))exp~x aaa(u.k))can(u,k)du. T'he structure of cn as
indicated in Figure 6c In the catze x 1. whea. x ,(0 or a 0, P' may lie deformed. respecttively,
Werongs U of I. w.t. the coa'tourJ or the cuntouirr , an shown in ligate CA. In either cuse,

case Jx) is toeen to vaanimhl owinig to the even properties of sn(u, k) andi both even and add proper.
ties of en(u. k) azial of du along the contours. If S(L 1811(u, 0c) hats the even properties of an on these -~'

contours, then those portions of .1(xW arising (tafter 6t e contour deforamantions) from integration.sŽ.

along I or IfMlso vanlith. From theme general statementso, it Iseeims clear that. the factorizattion

laritica in U inad latin the even properties of aea(u~k) on the contouir I Oil, is R in 100,and
anti %here h~ hu~ts no zerots or tsinuahlairitiesa in 1 ., and hats the even properties of an(u,k) on

We fiý,s4 f ind the poatsviblc loacationse of the zeros of hl tat w*'a2 . -fFi-I
VCJ2 - k2); some aof theme zeros aire extrantnrou. We tlmen write h c 'cn(aa,k) 4 da(aa,k), where

aa' is a constant, The -,trictoure of dn(to,Ic) is s4hr-wa in Figaeat 6c anud that of h 'in Figure 7am. All

because of the fact that, in Figures 6c tAnd 6e, cn and tln are odda function about the points



20 NAVAL RESCRANCY LAbOX.ATonr

PLANE

Lol

(6 b) o o 1 uP-N

Lao U$* OF W's sn(u,k)

A' - -- ONE PERIODOPARtALLE LOGPiAP

(6d)

0 0

I~ - a.-.-4

Q--) e- 1K EeA

]iue CssKrsam siguatOls ot ill w-wi(
- 0 ONTOURS1

7_



ONL PERIOD- I. W . . ,

(ATo) PAREAL ERCA LABORATORY

0o h '(u) e : .

ONL P 0R2OD- ,"

(7o) PBRALLHLOGTA
e

0 01

hL .0 cow',m*(oo2 02: o2

I I
0

ee

BRANCH CUTS ...-

@0 • 0 - 0• ." ':""Il

SFigurw 7. Steture of h. bu. ead bL

.1 '.I..



V. -

.1 I22 NAVAL RESEARCH LABORATORY

uSwkCJ GA . The. ract that zeros of h' are misising in the -egioaa U a*A L (as me"a.
by comiparing Viptore 7vt with Figure 6b) meunn that IJ+(w) ham "o zeros in two of the =io,6eets a
the Mlemape surface into which the w-plane must be devecloped because of the "u hvmckpb m
Figure 6a. T1he periods of h*' are A1 and 4iV (mt~a Figure 6d for K. W)

Ile factor hit is even about the even points K, K 4 M, K - V.' of sa(s, k1. k nip%& he astan

that hit is therefore periodic in u w~ith period 2iK!, but branch cuts are required and the period Is
4i1W. the 'verticail' period of P. The same conclusion holds for ht 9 and because h ' conveniently
has an even point at u 0. we may take hL(u) -htl(-uO. The zig-zag argument must be invoked
becausec of the lack of zerom of h' in the odd-numbered vertical strips-, for clutity we 1how the btructure

of ne erid o th fatorh 1 in Figure 7b. that of hit in Figure 7c.

The zero of h, in 110.0 belongs to h1.9 and is the start of a zig-zaX arpiamst air indicated by
the (1) at the top of the figure on the vrrticitl through the zero in question. The even property of hLI implies zeros in thie niext strip to the le-ft; this deduction foi'.is step two in the ,rguwent, an indicsAted
by (2) on the rippropriate vertical at the top of Figure 7h. Thesc zeros were not .ound in h', so that
cancelling pole. must be foundi in hU. This third step in the argument is indicated by (3) on the
appropriato! vertical at the top of Figure 4h. Corresponding poles mast be found sy'knmetrically disposed
with resplect to the even Points of h~. along the vertical marked (4) in IFigure 7c. etc. The zero of h'
ina 1. startj a simnilar zig-zag argument which cam be followed through the numbers W1). (2*)

The pole* of h ' are symme~trically disposed with respect to the even points of the factors; the

resulting aingulmrities in the factora are marked with heavy dots. In the neighborhood of the dot at
u - ;K ' (say) both (acitirs are asymptotically proportional to (u - iK T4~; this is the behavior requiring
branch cuts in each factor, cuts which may be taken to avoid the contour and which cause the period*
of the fnctor. to be 4iK '. It seems irampleut to regard each of the total structures in Figures 7b and
7c as a product of two factors, one having the structure given by the dots, the other containing no

branich points and huv.ing the structure srrived at by the zig-zag arguments. The two structures shows

has indicated in Figure Ua.

Under variation of the physical paramueters, the zero of h' in U0 . way migrate into L,,jj "~d

then, perap into U1 . It ir. seen that this zero imust remain in hL* so that factor@ sud subsequent
results. will vary onit~i'throughout the migration. Corresponding to a pilAme incident wave, the
prescnt analogue of the Tof (2) or (2.8) will have a single pole in the w-plnne (about which the contour

~~ in Figure 6a ito properly deformed). In the u-plane. T will then have the eves properties of san so that

in the Previous cases.
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